Squeeze-and-breathe evolutionary Monte Carlo optimization with local search acceleration and its application to parameter fitting.

نویسندگان

  • Mariano Beguerisse-Díaz
  • Baojun Wang
  • Radhika Desikan
  • Mauricio Barahona
چکیده

Estimating parameters from data is a key stage of the modelling process, particularly in biological systems where many parameters need to be estimated from sparse and noisy datasets. Over the years, a variety of heuristics have been proposed to solve this complex optimization problem, with good results in some cases yet with limitations in the biological setting. In this work, we develop an algorithm for model parameter fitting that combines ideas from evolutionary algorithms, sequential Monte Carlo and direct search optimization. Our method performs well even when the order of magnitude and/or the range of the parameters is unknown. The method refines iteratively a sequence of parameter distributions through local optimization combined with partial resampling from a historical prior defined over the support of all previous iterations. We exemplify our method with biological models using both simulated and real experimental data and estimate the parameters efficiently even in the absence of a priori knowledge about the parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Squeeze-and-Breathe Evolutionary Monte Carlo Optimisation with Local Search Acceleration and its application to parameter fitting

Motivation: Estimating parameters from data is a key stage of the modelling process, particularly in biological systems where many parameters need to be estimated from sparse and noisy data sets. Over the years, a variety of heuristics have been proposed to solve this complex optimisation problem, with good results in some cases yet with limitations in the biological setting. Results: In this w...

متن کامل

Monte Carlo Simulation for Treatment Planning Optimization of the COMS and USC Eye Plaques Using the MCNP4C Code

Introduction: Ophthalmic plaque radiotherapy using I-125 radioactive seeds in removable episcleral plaques is often used in management of ophthalmic tumors. Radioactive seeds are fixed in a gold bowl-shaped plaque and the plaque is sutured to the scleral surface corresponding to the base of the intraocular tumor. This treatment allows for a localized radiation dose delivery to the tumor with a ...

متن کامل

Probabilistic Power Distribution Planning Using Multi-Objective Harmony Search Algorithm

In this paper, power distribution planning (PDP) considering distributed generators (DGs) is investigated as a dynamic multi-objective optimization problem. Moreover, Monte Carlo simulation (MCS) is applied to handle the uncertainty in electricity price and load demand. In the proposed model, investment and operation costs, losses and purchased power from the main grid are incorporated in the f...

متن کامل

Evolutionary Local Search Algorithm for Portfolio Selection Problem: Spin Glass Based Approach

Nowadays, various imitations of natural processes are used to solve challenging optimization problems faster and more accurately. Spin glass based optimization, specifically, has shown strong local search capability and parallel processing. However, generally, spin glasses have a low rate of convergence, since they use Monte Carlo simulation techniques such as simulated annealing (SA). Here, we...

متن کامل

Parameter Fitting of Cosmological Models using Evolutionary Strategies

The current tools used for approximating cosmological parameters are Markov Chain Monte Carlo (MCMC) utilities using Metropolis-Hastings and Nested Sampling as the main sampling methods. These tend to have low sampling efficiency as many samples are wasted in trying to find good proposals of points at high regions of likelihood. In the data-rich era in which cosmology is entering, imaging the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 73  شماره 

صفحات  -

تاریخ انتشار 2012